61 research outputs found

    Geophysical characterisation of the ocean–continent transition at magma-poor rifted margins

    Get PDF
    Geophysical characterisation of the ocean-continent transition (OCT) at magma-poor riftedmargins has focused primarily on the determination of P wave velocities using wide-angleseismic techniques. Such experiments have shown that the OCT is heterogeneous, but thattypically velocities increase gradually with depth from ~5.0 km/s at top basement to ~8.0km/s at ~5 km deeper, without a large and abrupt Moho transition. The velocity variationwith depth is similar to that of old fracture zone crust, and appears to differ from that ofoceanic crust formed at ultra-slow spreading rates, though sampling of the latter is limited.Typically, the OCT is characterised by weakly lineated, low amplitude magnetic anomalies;the interpretation of these anomalies remains controversial. The oceanward limit of the OCTremains poorly defined on many margins

    P- and S- wave velocities of consolidated sediments from a seafloor seismic survey in the North Celtic Sea Basin, offshore Ireland

    No full text
    A geophysical survey was conducted over a hydrocarbon prospect in the North Celtic Sea Basin using a small array of ocean-bottom seismographs (OBSs). The purpose of this study was to determine the ratio of (P) compressional- to (S) shear-wave velocity of consolidated sedimentary rocks in order to constrain possible subsurface variations in pore-fluid content. The ratio of VP and VS- is known to be particularly sensitive to lithology, porosity and pore-fluid content, making it a useful parameter for evaluating hydrocarbon prospects. OBSs offer a relatively cheap and time-effective means of acquiring multi-component data compared with ocean-bottom cables. In this contribution, we demonstrate the ability of an OBS survey comprising three pairs of two OBSs spaced at 1.6 km to recover lateral variations in the VP/VS ratio. A key requirement of this type of study is that S-waves will be generated by mode conversions in the subsurface, since they cannot be generated in nor travel through fluids. In this survey, the contrast in physical properties of the hard seabed of the North Celtic Sea Basin provided a means of generating converted S-waves. Two-dimensional ray-tracing and forward modeling was used to create both VP and VS models along a profile crossing the Blackrock prospect in the North Celtic Sea Basin. These models comprise four layers and extend to a maximum depth of 1.1 km. The observed northward decrease in the VP/VS ratio at depths of 500-1000 m below the seafloor in the study area is interpreted to represent lateral variation in the amount of gas present in the pore space of Upper Cretaceous chalks and shales overlying the prospective reservoir

    Cenozoic evolution of the eastern Black Sea: a test of depth-dependent stretching models

    Get PDF
    Subsidence analysis of the eastern Black Sea basin suggests that the stratigraphy of this deep, extensional basin can be explained by a predominantly pure-shear stretching history. A strain-rate inversion method that assumes pure-shear extension obtains good fits between observed and predicted stratigraphy. A relatively pure-shear strain distribution is also obtained when a strain-rate inversion algorithm is applied that allows extension to vary with depth without assuming its existence or form. The timing of opening of the eastern Black Sea, which occupied a back-arc position during the closure of the Tethys Ocean, has also been a subject of intense debate; competing theories called for basin opening during the Jurassic, Cretaceous or Paleocene/Eocene. Our work suggests that extension likely continued into the early Cenozoic, in agreement with stratigraphic relationships onshore and with estimates for the timing of arc magmatism. Further basin deepening also appears to have occurred in the last 20 myr. This anomalous subsidence event is focused in the northern part of the basin and reaches its peak at 15–10 Ma. We suggest that this comparatively localized shortening is associated with the northward movement of the Arabian plate. We also explore the effects of paleowater depth and elastic thickness on the results. These parameters are controversial, particularly for deep-water basins and margins, but their estimation is a necessary step in any analysis of the tectonic subsidence record stored in stratigraphy. <br/

    Water saturation effects on P-wave anisotropy in synthetic sandstone with aligned fractures

    Get PDF
    The seismic properties of rocks are known to be sensitive to partial liquid or gas saturation, and to aligned fractures. P-wave anisotropy is widely used for fracture characterization and is known to be sensitive to the saturating fluid. However, studies combining the effect of multiphase saturation and aligned fractures are limited even though such conditions are common in the subsurface. An understanding of the effects of partial liquid or gas saturation on P-wave anisotropy could help improve seismic characterization of fractured, gas bearing reservoirs. Using octagonal-shaped synthetic sandstone samples, one containing aligned penny-shaped fractures and the other without fractures, we examined the influence of water saturation on P-wave anisotropy in fractured rocks. In the fractured rock, the saturation related stiffening effect at higher water saturation values is larger in the direction across the fractures than along the fractures. Consequently, the anisotropy parameter ‘?’ decreases as a result of this fluid stiffening effect. These effects are frequency dependent as a result of wave-induced fluid flow mechanisms. Our observations can be explained by combining a frequency-dependent fractured rock model and a frequency-dependent partial saturation model

    Spatial and temporal evolution of rifting and continental breakup in the Eastern Black Sea Basin revealed by long‐offset seismic reflection data

    Get PDF
    The age and distribution of the synrift and early postrift infill records the spatial and temporal distribution of extension and breakup processes in a rift basin. The Eastern Black Sea Basin (EBSB) is thought to have formed by back‐arc extension during Cretaceous to Early Cenozoic time. However, a lack of direct constraints on its deep stratigraphy leaves uncertainties over the time, duration, and location for rifting and breakup processes in the basin. Here we use the enhanced imaging provided by 2‐D long‐offset seismic reflection profiles to analyze the deep structural and stratigraphic elements of the EBSB. Based on these elements, we infer the presence of two distinct Late Cretaceous synrift units, recording initial extension (rift stage 1) over the continental highs (Shatsky Ridge and the Mid Black Sea High), followed by strain localization along the major basin‐bounding faults and rift migration toward the basin axis (rift stage 2). Overlying these units, Palaeocene(?)‐Eocene and Oligocene units show a synkinematic character in the NW, with evidence for ongoing extension until Oligocene time. Toward the SE, these sequences are instead postkinematic, directly overlaying a basement emplaced during breakup. We interpret the Palaeocene(?)‐Oligocene units to record the time spanning from the initiation of breakup (Late Cretaceous‐Palaeocene, in the SE) to the end of extension (Oligocene, in the NW). The first ubiquitously postrift infill is the Lower Miocene Maykop Formation. Our results highlight the along‐strike temporal variability of extension and breakup processes in the EBSB

    Resistivity image beneath an area of active methane seeps in the west Svalbard continental slope

    Get PDF
    The Arctic continental margin contains large amounts of methane in the form of methane hydrates. The west Svalbard continental slope is an area where active methane seeps have been reported near the landward limit of the hydrate stability zone. The presence of bottom simulating reflectors (BSRs) on seismic reflection data in water depths greater than 600 m suggests the presence of free gas beneath gas hydrates in the area. Resistivity obtained from marine controlled source electromagnetic (CSEM) data provides a useful complement to seismic methods for detecting shallow hydrate and gas as they are more resistive than surrounding water saturated sediments. We acquired two CSEM lines in the west Svalbard continental slope, extending from the edge of the continental shelf (250 m water depth) to water depths of around 800 m. High resistivities (5–12 Ωm) observed above the BSR support the presence of gas hydrate in water depths greater than 600 m. High resistivities (3–4 Ωm) at 390–600 m water depth also suggest possible hydrate occurrence within the gas hydrate stability zone (GHSZ) of the continental slope. In addition, high resistivities (4–8 Ωm) landward of the GHSZ are coincident with high-amplitude reflectors and low velocities reported in seismic data that indicate the likely presence of free gas. Pore space saturation estimates using a connectivity equation suggest 20–50 per cent hydrate within the lower slope sediments and less than 12 per cent within the upper slope sediments. A free gas zone beneath the GHSZ (10–20 per cent gas saturation) is connected to the high free gas saturated (10–45 per cent) area at the edge of the continental shelf, where most of the seeps are observed. This evidence supports the presence of lateral free gas migration beneath the GHSZ towards the continental shelf

    Seismic evidence for shallow gas-escape features associated with a retreating gas hydrate zone offshore west Svalbard

    Get PDF
    Active gas venting occurs on the uppermost continental slope off west Svalbard, close to and upslope from the present-day intersection of the base of methane hydrate stability (BMHS) with the seabed in about 400 m water depth in the inter-fan region between the Kongsfjorden and Isfjorden cross-shelf troughs. From an integrated analysis of high-resolution, two-dimensional, pre-stack migrated seismic reflection profiles and multibeam bathymetric data, we map out a bottom simulating reflector (BSR) in the inter-fan region and analyze the subsurface gas migration and accumulation. Gas seeps mostly occur in the zone from which the BMHS at the seabed has retreated over the recent past (1975–2008) as a consequence of a bottom water temperature rise of 1°C. The overall margin-parallel alignment of the gas seeps is not related to fault-controlled gas migration, as seismic evidence of faults is absent. There is no evidence for a BSR close to the gas flare region in the upper slope but numerous gas pockets exist directly below the predicted BMHS. While the contour following trend of the gas seeps could be a consequence of retreat of the landward limit of the BMHS and gas hydrate dissociation, the scattered distribution of seeps within the probable hydrate dissociation corridor and the occurrence of a cluster of seeps outside the predicted BMHS limit and near the shelf break indicate the role of lithological heterogeneity in focusing gas migration

    Seismic reflection imaging of mixing processes in Fram Strait

    Get PDF
    The West Spitsbergen Current, which flows northward along the western Svalbard continental slope, transports warm and saline Atlantic water (AW) into the Arctic Ocean. A combined analysis of high-resolution seismic images and hydrographic sections across this current has uncovered the oceanographic processes involved in horizontal and vertical mixing of AW. At the shelf break, where a strong horizontal temperature gradient exists east of the warmest AW, isopycnal interleaving of warm AW and surrounding colder waters is observed. Strong seismic reflections characterize these interleaving features, with a negative polarity reflection arising from an interface of warm water overlying colder water. A seismic-derived sound speed image reveals the extent and lateral continuity of such interleaving layers. There is evidence of obliquely aligned internal waves emanating from the slope at 450–500 m. They follow the predicted trajectory of internal S2 tidal waves and can promote vertical mixing between Atlantic and Arctic-origin waters

    Lateral coexistence of ductile and brittle deformation shapes magma-poor distal margins: An example from the West Iberia-Newfoundland margins

    Get PDF
    A long-standing problem in solid Earth science is to understand how low-angle normal faults form, their role in the development of tectonic asymmetry of conjugate margins, and how they relate to mantle hydration during continental breakup. The latter requires water to reach the mantle through active brittle faults, but low angle slip on faults is mechanically difficult. Here, we incorporate observations from high-resolution multichannel seismic data along the West Iberia-Newfoundland margins into a 2D forward thermo-mechanical model to understand the relationship between evolving rift asymmetry, detachment tectonics, and mantle hydration. We show that, during extreme extension, slip on active faults bifurcates at depth into brittle and ductile deformation branches, as a result of the cooling of the faults' footwall and heating of their hangingwall. The brittle deformation penetrates the Moho and leads to mantle hydration, while ductile deformation occurs in localized shear zones and leads to the formation of detachment-like structures in the distal margin sections. Such structures, as for example ‘S’ in the West Iberia-Newfoundland margins, are thus composed of several shear zones, active at low-angles, ∼25°-20°, and merging with the Moho at depth. The final sub-horizontal geometry of these structures is the result of subsequent back-rotation of these shear zones by new oceanward faults. Our results reproduce remarkably well the final sedimentary, fault, crustal architecture, and serpentinisation pattern observed at the West Iberia-Newfoundland margins. However, they challenge widely accepted ideas that such detachment-like structures formed by brittle processes, separate crust from mantle and caused conjugate margin asymmetry. Our model provides a quantitative framework to study hydrothermal systems related to serpentinization during extreme extension, their associated hydrogen, methane production, and the chemosynthetic life they sustain

    Marine dipole–dipole controlled source electromagnetic and coincident-loop transient electromagnetic experiments to detect seafloor massive sulphides: effects of three-dimensional bathymetry

    Get PDF
    Seafloor massive sulphides (SMSs) are regarded as a potential future resource to satisfy the growing global demand of metals including copper, zinc and gold. Aside from mining and retrieving profitable amounts of massive sulphides from the seafloor, the present challenge is to detect and delineate significant SMS accumulations, which are generally located near mid-ocean ridges and along submarine volcanic arc and backarc spreading centres. Currently, several geophysical technologies are being developed to detect and quantify SMS occurrences that often exhibit measurable contrasts in their physical parameters compared to the surrounding host rock. Here, we use a short, fixed-offset controlled source electromagnetic (CSEM) system and a coincident-loop transient electromagnetic (TEM) system, which in theory allow the detection of SMS in the shallow seafloor due to a significant electrical conductivity contrast to their surroundings. In 2016, CSEM and TEM experiments were carried out at several locations near the Trans-Atlantic Geotraverse hydrothermal field to investigate shallow occurrences of massive sulphides below the seafloor. Measurements were conducted in an area that contains distinct SMS sites located several kilometres off-axis from the Mid-Atlantic ridge, some of which are still connected to hydrothermal activity and others where hydrothermal activity has ceased. Based on the quality of the acquired data, both experiments were operationally successful. However, the data analysis indicates bias caused by three-dimensional (3D) effects of the rough bathymetry in the study area and, thus, data interpretation remains challenging. Therefore, we study the influence of 3D bathymetry for marine CSEM and TEM experiments, focusing on shallow 3D conductors located beneath mound-like structures. We analyse synthetic inversion models for attributes associated with 3D distortions of CSEM and TEM data that are not sufficiently accounted for in conventional 1D (TEM) and 2D (CSEM) interpretation schemes. Before an adequate quantification of SMS in the region is feasible, these 3D effects need to be studied to avoid over/underestimation of SMS using the acquired EM data. The sensitivity of CSEM and TEM to bathymetry is investigated by means of 3D forward modelling, followed by 1D (TEM) and 2D (CSEM) inversion of the synthetic data using realistic error conditions. Subsequently, inversion models of the synthetic 3D data are analysed and compared to models derived from the measured data to illustrate that 3D distortions are evident in the recorded data sets
    corecore